Operations Recognition at Drill-Rigs

<u>Bilal Esmael</u>, Arghad Arnaout, Rudolf K. Fruhwirth and Gerhard Thonhauser

Outline

- 👗 The drilling process
- 👗 Drilling real-time data
- X Drilling Activity breakdown
- X Multilevel Classification
 - Data Preparation
 - Feature Extraction
 - Feature Selection
 - Classifier Training

The Drilling Process - Basic Actions

Rotating the drill string Moving the drill string Rotating System Hoisting System

Circulating the drilling mud Circulation System

Drilling Real-time Data

- Many mechanical parameters are continuously measured during drilling oil wells.
- These parameters are measured by a group of sensors located around the drilling rig and wired to a measurement system called a mud-logging system.
- 1. Bit Depth
- 2. Hole Depth
- 3. Hook Load
- 4. Block Position
- 5. Rate of Penetration (ROP)
- 6. Rotary Speed
- 7. Rotary Torque
- 8. Weight on Bit
- 9. Mud Flow

Drilling Real-Time Data

Data Plot

Improving the Drilling process

- Drilling oil wells is a costly process.
 - Improving this process is an essential task for the operators.
- We can improve only what we can measure
- Improving the drilling process relies on performance analysis that is primarily based on activity breakdowns.

Operation Recognition Results for one Day

Improving the Drilling process

- Operations recognition systems break the total drilling time down into list of well-defined operations like drilling, rotating, make connection, etc.
- The proposed method supports the extraction of knowledge from sensor data to:
 - improve productivity and performance,
 - prevent from mistakes and
 - resolve problems faster.

Multilevel Classification

Data Preperation

- The sensor data are not directly ready for building the classification models.
- These data contain **outliers** and **missing values** that will influence the accuracy of the features calculation.
- Data cleansing is an elementary step that should precede all others machine learning steps.
- Two subtasks were executed:
 - Identification and handling of missing values
 - Identification and handling of outliers

Feature Extraction

- Physical features are calculated from the sensor data.
 - Block Speed
 - String Mass
 - Bit Speed
 - Bit Acceleration
 - Etc.

Feature Selection

Classifier Training

Prevention of Overtraining & Oversizing

Experimental Results

Confusion Matrix

String Movment

stn:L (e1)	97.2%	
{d}	{s}	{u}
98.6%	97.0%	75.4%
5503	24	46
34	1029	39
45	8	260
79	32	85
5582	1061	345

stn·T (o1)	98 0%	
501.1 (01)	50.070	
{d}	{s}	{u}
99.1%	97.0%	82.5%
1835	8	14
8	353	6
8	3	94
16	11	20
1851	364	114

stn:V (e1)	97.8%	
{d}	{s}	{u}
98.7%	97.5%	80.6%
1850	7	9
5	349	10
19	2	79
24	9	19
1874	358	98

Acknowledgement

We thank **TDE**, **ADS** and **TRIDEC** for supporting this work and for the permission to publish this work.

